The Compact Classifier System: Scalability Analysis and First Results

Xavier Llorà, Kumara Sastry, & David E. Goldberg

Illinois Genetic Algorithms Lab
University of Illinois at Urbana-Champaign

{xllora,kumara,deg}@illigal.ge.uiuc.edu
Motivation

- Pittsburgh classifier systems
- Can we apply Wilson’s ideas for evolving rule sets formed only by maximally accurate and general rules?
- Bottom up approach for evolving such rules
 - The compact classifier system
- Previous Multiobjective (Llorà, Goldberg, Traus, Bernadó, 2003) approaches were top down
 - Explicitly address accuracy and generality
 - Use it to push and product compact rule sets

- Side product:
 - Scalability challenge of De Jong & Spears (1991) representation
Binary Rule Encoding

- De Jong & Spears (1991)
- Widely used in Pittsburgh classifiers
- GALE, MOLS, GAssist have used it

<table>
<thead>
<tr>
<th>color</th>
<th>shape</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>round</td>
<td>huge</td>
</tr>
<tr>
<td>green</td>
<td>square</td>
<td>large</td>
</tr>
<tr>
<td>blue</td>
<td>huge</td>
<td>medium</td>
</tr>
<tr>
<td>white</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A rule is expressed as \((1111|01|0110)\)

- Equivalent to Holland's (1975) representation \((#11,#12)\)
- A rule set is a disjunction of such rules
Previous Efforts based using Multiobjective Optimization

(Llorà, Goldberg, Traus, Bernadó, 2003)
Maximally Accurate and General Rules

• Accuracy and generality can be computed using data set

\[\alpha(r) = \frac{n_{t+}(r) + n_{t-}(r)}{n_t} \quad \varepsilon(r) = \frac{n_{t+}(r)}{n_m} \]

• Fitness should combine accuracy and generality

\[f(r) = \alpha(r) \cdot \varepsilon(r)^\gamma \]

• Such measure can be either applied to rules or a rule sets

• The compact classifier systems uses this fitness and a compact genetic algorithm (cGA) to evolve such rules

• Each cGA run use a different initial perturbed probability vector
The Compact Genetic Algorithm Can Make It

- Rules may be obtained optimizing

\[f(r) = \alpha(r) \cdot \varepsilon(r)^{\gamma} \]

- The basic cGA scheme
 1. Initialization \(p_{xi}^0 = 0.5 \)
 2. Model sampling (two individuals are generated)
 3. Evaluation \(f(r) \)
 4. Selection (tournament selection)
 5. Probabilistic model updation
 6. Repeat steps 2-5 until termination criteria are met
cGAModel Perturbation

- Facilitate the evolution of different rules
- Explore the frequency of appearance of each optimal rule
- Initial model perturbation
 \[p_{x_i}^0 = 0.5 + U(-0.4, 0.4) \]
- Experiments using the 3-input multiplexer
- 1,000 independent runs
- Visualize the pair-wise relations of the genes
Initial Perturbed Vectors Leading to rule \(100111(01#)\)

Problem structure
Initial Perturbed Vectors Leading to rule 011101(1#1)
Perturbation Summary

• 97% of the runs lead to a maximally general and accurate rule

• The provability of evolving each of the optimal rules was roughly 1/3

• The initial perturbed probability vectors that lead to an optimal rule show pair-wise relations among genes

• The pair-wise relations reflect the problem structure
But One Rule Is Not Enough

• Model perturbation in cGA evolve different rules
• The goal: evolve population of rules that solve the problem together
• The fitness measure ($f(r)$) can be also be applied to rule sets
• Two mechanisms:
 - Spawn a population until the solution is meet
 - Fusing populations when they represent the same rule
Table 1: Algorithmic description of the CCS.

1. \(\mathcal{D} \leftarrow \{\text{pert}(p_0), \ldots, \text{pert}(p_k)\} \).
2. Foreach \(p_i \in \mathcal{D} \) run cGA.
3. \(\mathcal{R} \leftarrow \{r_i \text{ sampled from } p_i\} \).
4. Compute \(f(\mathcal{R}) \) using equation 3.
5. If given \(p_i, p_j \in \mathcal{D} \) and \(d(p_i, p_j) < \theta \) then \(\mathcal{D} \leftarrow \mathcal{D} \setminus \{p_i\} \).
6. If \(f(\mathcal{R}) = 1.0 \) return \(\mathcal{R} \) else \(\mathcal{D} \leftarrow \mathcal{D} \cup \{\text{pert}(p)\} \) and goto 2.
Experiments & Scalability

- Analysis using multiplexer problems (3-, 6-, and 11-input)
- The number of rules in [O] grow exponentially
 - 2^i, where i is the number of inputs
- The CGA success as a function of the problem size
 - 3-input: 97%
 - 6-input: 73.93%
 - 11-input: 43.03%
- Scalability over 10,000 independent runs
Scalability of CCS

![Graph showing the scalability of CCS with the equation fit: $1.83 \times e^{0.28\times l}$]
Unmatchable Rules: A Byproduct

• A rule is unmatchable if:
 - At least one attribute in the contain have all its possible values set to 0

<table>
<thead>
<tr>
<th>color</th>
<th>shape</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>round</td>
<td>huge</td>
</tr>
<tr>
<td>green</td>
<td>square</td>
<td>large</td>
</tr>
<tr>
<td>blue</td>
<td></td>
<td>medium</td>
</tr>
<tr>
<td>white</td>
<td></td>
<td>small</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• The rule (1111|00|0110) force the shape to be neither round or square
• Hence no data instance will ever match it
• Direct impact on the scalability of LCS/GBML system using it (as simple experiments with the multiplexer show)
3-Input Multiplexer

37 unmatchable rules (57.8%)
6-Input Multiplexer

3,367 unmatchable rules (82.2%)
11-Input Multiplexer

4,017,157 unmatchable rules (95.7%)
Growth Ratio of Unmatchable Rules (I/III)

• An unmatchable rule has all attribute values set to 0
• Analysis for problems with binary attributes (worst case)
• The total number of rules
 \[\Sigma(l) = 2^l \]
• Number of rules matchable rules (all attributes set to either 01, 11, & 11)
 \[\Psi(l) = 3^2 \]
• Size of the unmatchable rule set plateau
 \[\Phi(l) = \Sigma(l) - \Psi(l) = 2^l - 3^2 \]
Growth Ratio of Unmatchable Rules (II/III)

- Growth ratio of unmatchable rules
 \[\rho(l) = \frac{\Phi(l)}{\Psi(l)} = \frac{2^l}{l^2} - 1 \]

- It can be approximated by
 \[\rho(l) \approx e^{cl} \]
 \[c = \ln\left(\frac{2}{\sqrt{3}}\right) = 0.143 \]

- The growth ratio (\(\rho\)) for this representation grows exponentially
Growth Ratio of Unmatchable Rules (III/III)

\[\rho(l) = \frac{2^l}{3^l} - 1 \]

\[\rho(l) \propto e^{cl} \]
Conclusions

• Initial steps to evolve rule sets formed only by maximally accurate and general rules using Pittsburgh systems
• Using a cGA and the appropriate fitness function (CCS) we can evolve such rules
• Rule representation has a direct connection to the scalability of any GBML system
 - A wrong choice makes the problem extremely hard
• Further analysis for different representations is needed (Stone, 2004)